ДЕСЯТКОВІ СУМАТОРИ-ВИЧІТАТЕЛЯ
Для обчислення різниці двох позитивних однорозрядних чисел або алгебраїчної суми чисел з різними знаками скористаємося операцією перетворення прямого коду 8421 в зворотний код 8421 (див. Параграфи 2.5 та 2.6). Така операція також називається перетворенням коду 8421 на додаток до 9 і виконується відповідно до таблиці істинності (табл. 4.7).
Таблиця 4.7
|
Входи (прямий код) |
Виходи (зворотний код) |
||||||
|
|
|
|
|
|
|
|
|
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
2 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
3 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
4 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
5 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
6 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
7 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
0 |
8 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
9 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
З зіставлення стовпців табл. 4.7 випливає, що d Q = Л0, = А х. Вирази для Л2 і А 3 отримані за допомогою карт Карно (рис. 4.12) з урахуванням того, що комбінації k = 10 + 15
Мал. 4.12. Карти Карно для отримання виразів вихідних сигналів d 3 і d 2 перетворювача коду 8421 на додаток до 9
ніколи не використовуються. Нижче наведені структурні формули для перетворювача коду 8421 на додаток до 9
(4.12)
Випускаються в інтегральному виконанні перетворювачі будують за наведеними вище структурним формулам і доповнюють їх входом управління. Схема керованого перетворювача коду 8421 на додаток до 9 (СМР - Complement) і його умовне графічне позначення представлені на рис. 4.13.
Мал. 4.13. Схема керованого перетворювача прямого коду 8421 в зворотний код ( а ) і його умовне графічне позначення (б)
Керований перетворювач містить перетворювач коду 8421 на додаток до 9 (виділено на рис. 4.13, а пунктирною лінією), побудований за формулами (4.12); три елементи 2И-АБО, оскільки розряд а х вхідного операнда не змінює значення при проходженні перетворювача, тобто сигнал на виході керованого перетворювача а. = A x = d v
При Z = 0 відкриті верхні схеми збігу елементів 2И-АБО і на їх вихід проходять сигнали d y d 2 , d 0 зворотного коду 8421, при Z = 1 відкриті нижні схеми збігу і на вихід надходять сигнали окремих розрядів А у А 2 , А 0 вхідного операнда.
На рис. 4.14 приведена схема 3-розрядного десяткового суматора-вичітателя, що містить три керованих перетворювача СМР {десяткового числа на додаток до 9 і три однорозрядних десяткових сумматора 5М ((г = 0,1,2). Значення керуючого сигналу Z = 0 відповідає
Мал. 4.14. Схема 3-розрядного десяткового суматора-вичітателя
операції складання, a Z = 1 - операції віднімання. Перетворювачі CMP j виконують функції
де - 4-розрядні операнди (тетради) на виходах і входах керованих перетворювачів:
Десяткові суматори SM j обчислюють суму
де - сигнал перенесення на вході i-ro суматора, причому
- вхідні операнди і сума в десятковій системі числення.
При відніманні (Z = 1) сума видається в десятковому додатковому коді і може мати позитивне або негативне значення. Значення і знак суми визначаються за значенням сигналу перенесення C3 і мають вигляд
Знаковим розрядом є перенесення C3. Щоб при додаванні розрядна сітка не рясніла, повинна виконуватися умова